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Abstract
There are various decompositions of matrices in the literature such as lower-upper, singu-

lar value and polar decompositions to name a few. In this paper we are concerned with a less 
standard matrix decomposition for invertible matrices of order 3 with real entries, called TRD 
decomposition. In this decomposition an invertible matrix is written as product of three matrices 
corresponding to a shear, a rotation and a dilation map that transform the unit sphere to an el-
lipsoid. The reason of our interest is the geometric visualization of this decomposition. We also 
implemented an algorithm to compute this decomposition both in Maple and Matlab.

1 Introduction
There are various matrix decompositions that each of them are designed for a specific computational
goal. Probably the most known ones are lower-upper (LU) decomposition [12], which is suitable
for solving a system of linear equations, and Polar and Singular Value decompositions [1, 4, 11, 13]
which are useful in finding the best rank-k approximation or in Quantum information theory. Here
we are interested in a less standard matrix decomposition called TRD decomposition which might
not seem to have a specific advantage for a computational problem, but instead has an interesting
geometric interpratation. This matrix decomposition is introduced in a blog note by Danny Calegari
[6]. Let M be a three times three invertible matrix with real entries. The matrix M can be written
as product of three matrices T , R and D, M = TRD, where D is a diagonalizable matrix with two
equal eigenvalues, R is an orthogonal matrix and finally T is a shear matrix. The product TRD is
corresponding to a series of linear transformations that send the unit sphere to the same ellipsoid that
M does. The goal of this paper is to provide an algorithm to compute this decomposition.

The structure of this paper is as the following. Section 2 contains some elementary definitions
from linear algebra. Section 3 contains a complete discussion on Ellipsoids and their properties
needed for presenting the TRD decomposition in Section 4. The main algorithm is given in Section 4.
Finally we close the paper with some remarks in Section 5.
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1.1 Notations
By a vector v ∈ Rn we mean a column vector, i.e. an n × 1 matrix. The ith entry of the vector v is
denoted by vi. Transpose of a matrix M is denoted by M t. A row vector is represented as transpose
of a column vector, i.e. vt. If M is an m × n matrix, then the linear map from Rn to Rm, sending a
vector v to M · v, is also denoted by M . Let A be a subset of Rn and M an m× n matrix, The image
of A under the linear map M is defined as {M(v) | v ∈ A} and denoted by M(A). By GLn(R) we
mean the general linear group of order n over R which is the set of invertible n×n matrices with real
entries.

Let x1, x2, ..., xn represent the n coordinate variables in Rn, then we define the vector X to be
the column vector (x1, x2, . . . , xn). In R3, instead of x1, x2 and x3 we use x, y and z respectively. By
R[X] we mean the set of polynomials in n variables xis and coefficients from R. For a set F ⊆ R[X],
we denote the set of common solutions of the polynomials in F as a subset of Rn by V (F ). When the
set F contains only one polynomial, say f , We simply write V (f) instead of V ({f}).

We denote the surface of the unit sphere in Rn by Sn−1. That is Sn−1 = V (
∑n

i=1 x
2
i − 1). In this

work all geometric objects are considered centered at origin.

2 Preliminaries
First we recall definition of several important class of matrices.

Definition 1 A square matrix of order n with real entries, U , is called an orthogonal matrix if UU t =
U tU = In where In is the identity matrix of order n.

An orthogonal matrix is an isometry and geometrically it is corresponding to a rotation, or a
reflection or a combination of these two. Therefore it is also called a rotation matrix. A matrix is
orthogonal if and only if it sends an orthonormal basis of Rn to another orthonormal basis [1, Result
7.42].

Definition 2 A dilation matrix is a diagonalizable matrix with positive eigenvalues.

The geometric effect of a dilation matrix is scaling a geometric object in the direction of the
eigenvectors of this matrix with the scaling factor of the corresponding eigenvalues.

Definition 3 Let W be a linear subspace of Rn of dimension m where 1 ≤ m ≤ n − 1. Pick up
a basis for W , say {v1, . . . , vm}. Extend this basis to a basis for Rn, denote this basis by B =
{v1, . . . , vm, vm+1, . . . , vn}. A shear matrix keeping W fixed, or also said parallel to W , is a matrix
that its representation in B can be written in the following block form.[

Im M
0 In−m

]
,

where M is an m× (n−m)-matrix.

Lemma 4 An inverse of a shear matrix, is a shear matrix keeping the same subspace fixed.
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Proof. Note that a block matrix of the form
[
Im M
0 In−m

]
is invertible and its inverse is

[
Im −M
0 In−m

]
.

Remember that a real symmetric matrix has real eigenvalues, and even more, it is orthogonally
diagonalizable. That is, if M is a square matrix of order n such that M t = M , then there exist
an orthogonal matrix U and a diagonal matrix S with eigenvalues of M on its diagonal such that
M = USU t. In this paper by positive definite matrix we mean real symmetric matrices with only
positive eigenvalues.

3 Ellipsoids

3.1 Definition of an ellipsoid
An ellipsoid is usually defined in one of the following two ways [5, Section 2.2.2].

Definition 5 Let M ∈ GLn(R), image of Sn−1 under M is called a non-degenerate ellipsoid and we
denote it by EM .

In this paper, by default, when we say an ellipsoid, we mean a non-degenerate ellipsoid.

Definition 6 Let P be a positive definite matrix of order n. Define fP to be the following polynomial
in R[X].

X tP−1X − 1. (1)

The set V (fP ) is an ellipsoid. We denote this ellipsoid by EP .

The reader should be careful to not confuse these two definitions, as they do not define the same
ellipsoids. More importantly the second definition does not consider every invertible matrix, the
matrix used in Definition 6 needs to be positive definite.

Example 7 Consider the following matrix.

M1 =

 1 2 3
0 1 0
−1 1 0

 . (2)

The image of the unit sphere under M1 which is EM1 defined in Definition 5 is depicted in Figure 1a
and is indeed an ellipsoid. However, if one forget about the conditions in Definition 6 on the matrix
and attempt to plot V (fM1) where fM1 is given as in equation 1, then they will get the geometric shape
in Figure 1b which of course is not an ellipsoid. Note that the matrix M1 here, is not symmetric and
thus not positive definite.

Definition 6 explicitly introduces an equation for the ellipsoid EP , but what about the defining
equation of the ellipsoid EM of Definition 5?
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(a) (b)

Figure 1: One should not confuse the two definitions of ellipsoids given by a matrix. The ellipsoid
in Definition 5, EM , is defined for any invertible matrix, whereas the ellipsoid in Definition 6, EP is
defined for positive definite matrices.
(a) The ellipsoid EM1 for the matrix M1 given in equation 2.
(b) When one ignores the condition on the matrix in Definition 6 and tries to plot EM1 for M1 in
equation 2, they get a non-ellipsoid surface.

Lemma 8 Let X = (x1, . . . , xn) and F ⊆ R[X]. For any M ∈ GLn(R), the image of V (F ) under
M is defined by the same set of polynomials after substituting xi = (M−1X)i for i = 1, . . . , n which
we denote it by F |X=M−1X . In other words,

M
(
V (F )

)
= V

(
F |X=M−1X

)
. (3)

Before proving this simple lemma, let us use it to answer the question of “how to find the defining
equation of EM of Definition 5”.

Example 9 In Example 7 we saw that Definition 6 can not assign an ellipsoid to an invertible matrix
that is not positive definite. That of course shows that the two definitions are not the same, but this
alone does not say anything about the case where both definitions are applicable. In another word, do
these two definitions assign the same ellipsoid to a positive definite matrix? Consider the following
matrix.

M2 =

 3 −1 0
−1 2 0
0 0 2

 . (4)

First we write the defining polynomial of EM2 .

fM2 = X tM−1
2 X − 1

=
[
x y z

] 2
5

1
5

0
1
5

3
5

0
0 0 1

2

xy
z

− 1

=
2

5
x2 +

2

5
xy +

3

5
y2 +

1

2
z2 − 1.

This ellipsoid, EM2 = V (fM2), is depicted in Figure 2a.
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Now we use Lemma 8 to write the defining polynomial of EM2 . Note that the substitution rule
given by X =M−1

2 X means that every instance of x in a formula should be replaced by 2
5
x+ 1

5
y and

similarly y and z being replaced by 1
5
x + 3

5
y and 1

2
z respectively. Noting that the unit sphere can be

written as V (x2 + y2 + z2 − 1), we have the following.

EM2 =M2(S2)
=M2

(
V (x2 + y2 + z2 − 1)

)
= V

(
(x2 + y2 + z2 − 1) |X=M−1

2 X

)
= V

(
(
2

5
x+

1

5
y)2 + (

1

5
x+

3

5
y)2 + (

1

2
z)2 − 1

)
= V (

1

5
x2 +

2

5
xy +

2

5
y2 +

1

4
z2 − 1).

Therefore the defining equation of EM2 is 1
5
x2 + 2

5
xy + 2

5
y2 + 1

4
z2 − 1 = 0. This ellipsoid is depicted

in Figure 2b.

(a) (b)

Figure 2: For a positive definite matrix, M , the two ellipsoids EM and EM are not the same.
(a) The ellipsoid EM2 for the matrix M2 given in equation 4.
(b) The ellipsoid EM2 for the matrix M2 given in equation 4.

As one can see from Examples 7 and 9, the two definitions are not the same and when both are
applicable they may associate different ellipsoids to the same matrix. In some texts one defines the
associated ellipsoid to a matrix M to be EM (see [3, Exercise 8.13] as an example). However, we
consider EM as the associated ellipsoid to the matrix M when nothing more is mentioned.

Proof of Lemma 8. Consider the assumptions in the lemma. The proof is simple. One just need to
note that if a substitution rule is defined by sending xi to (NX)i for a matrix N of order n and f is a
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function from Rn to R, then f |X=NX is equal to f ◦N , where ◦ is the function composition operator.

u ∈M
(
V (F )

)
⇐⇒ ∃v ∈ V (F ) such that u =Mv

⇐⇒M−1u ∈ V (F )

⇐⇒ ∀f ∈ F : f(M−1u) = 0

⇐⇒ ∀f ∈ F :
(
f ◦M−1)(u) = 0

⇐⇒ ∀g ∈ F |X=M−1X : g(u) = 0

⇐⇒ u ∈ V
(
F |X=M−1X

)
.

Note that we used the assumption that M has an inverse.
The next natural question is if there is any relation between EM and EM . The answer is positive.

This relation is already known (for example see [5, Section 2.2.2]), but we think it is beneficial for
some readers to have a formal proof written somewhere so we bring the following two propositions.

Proposition 10 Let P be a positive definite matrix of order n. Then EP = EP 2 .

Proof. We prove this equality by showing that the defining equations of the two ellipsoids in the
proposition are equal. Note that since P is symmetric we have P t = P , even more, for every k ∈ Z
we have (P k)t = P k.

fP 2 = X t(P 2)−1X − 1

= X t(P−1P−1)X − 1

= X t
(
(P−1)tP−1

)
X − 1

=
(
X t(P−1)t

)
(P−1X)− 1

= (P−1X)t(P−1X)− 1

= (X tX − 1) |X=P−1X

Define g = X tX − 1, then we proved that fP 2 = g |X=P−1X . Because V (g) = Sn−1, by Lemma 8
this shows the following

EP 2 = V (fP 2) = V (g |X=P−1X) = P
(
V (g)

)
= P (Sn−1) = EP .

Proposition 11 Let M ∈ GLn(R). There exists a positive definite matrix P such that EM is image of
EP under a rotation transformation (a rotation, a reflection or a mixture of the two).

Proof. Let M = U1SU
t
2 be the singular value decomposition of M . Therefore U1 and U2 are orthog-

onal matrices and S is a diagonal matrix with positive entries on its diagonal. Define U3 = U1U
t
2 and

P1 = U2SU
t
2, it is easy to verify that U3 is also orthogonal and P1 is a positive definite andM = U3P1,

i.e. this is the polar decomposition of M . Define P2 = P 2
1 , clearly P2 is also positive definite. By
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Proposition 10 we know that EP1 = EP2 . Thus

EM =M(Sn−1)
=
(
U3P1

)
(Sn−1)

= U3

(
P1(Sn−1)

)
= U3(EP1)

= U3(EP2).

Remember from Section 2 that a rotation transformation is a linear map defined by an orthogonal
matrix.

3.2 Semi-axes of ellipsoids
Before introducing semi-axes of an ellipsoid, we need the following definition.

Definition 12 Remember the Euclidean distance function.{
d : Rn × Rn → R≥0

(u, v) 7→
√∑n

i=1(ui − vi)2
. (5)

Let A ⊆ Rn, and c ∈ Rn, define dA,c to be the function A → R≥0, sending v ∈ A to d(c, v). When
c = (0, . . . , 0), we drop the emphasis on c and simply write dA. Length of the point (or vector) v is
the Euclidean distance of v from origin, (0, . . . , 0), and is denoted by |v|.

Let us start from a familiar case. Consider an ellipse E in R2. The function dE has four local
extremums, two by two located on same lines passing through the origin, in fact reflection of each
other. Such a pair of points are called antipodal. See Figure 3a for an example. We pick up one
point from each antipodal pair and call them semi-axes of the ellipse. The semi-axes as vectors are
orthogonal and span R2, so they form an orthogonal basis. At one of the semi-axes dE attains its
maximum value, thus it is called the major semi-axis and at the other one dE attains its minimum so
it is called the minor semi-axis.

In R3 we have three semi-axes where the Euclidean distance function has a maximum, a saddle
point and a minimum called major, mean and minor semi-axes. See Figure 3b. In general for an
arbitrary ellipsoid in Rn we have n semi-axes that we can order them by their length.

A natural question is how to find the coordinates of semi-axes of an ellipsoid given by a matrixM .
One way is to use the defining equation of the ellipsoid which now we know how to get its formula
thanks to Lemma 8. We first remind the following proposition from algebraic geometry which is not
a new result (see [10] for example).

Proposition 13 Let X = (x1, . . . , xn), F = {f1, . . . , fm} ⊆ R[X], A = V (F ) and c ∈ Rn. The set
of critical points of dA,c are the points v ∈ A such that v − c belong to the normal space of A at v.

Proof. Remember that the tangent space of a manifold A at a point v is the linear space generated by
the direction vectors of the tangent lines to A at v, denoted by TvA, and the normal space of A at v is
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(a) (b)

Figure 3: Semi-axes of ellipsoids.

(a) The ellipse EM for M =

[
2 1
1 4

]
. An ellipsoid in R2 which is an ellipse has two semi-axes.

The function dEM
has four extremums shown in the figure. Two of these points are located on a

line through the origin and the other two on a different line through origin. Therefore we have two
antipodal pairs. From each of these two pairs, one point is selected. The point where dEM

attains
minimum is called the minor semi-axis and the one where dEM

attains its maximum is called the
major semi-axis.
(b) The ellipsoid EM1 for M1 in equation 2. An ellipsoid in R3 has three semi-axes called major,
mean and minor.

the orthogonal complement of TvA, denoted by NvA. We use the Lagrange multipliers ([9, Chapter
7, Theorem 1.13]) to find the critical points of dA,c.

Define the following new function using the auxiliary variables λi, i = 1, . . . ,m.

φ = d+ λ1f1 + · · ·+ λmfm. (6)

Domain of φ is Rn+m. Its critical points satisfy the following system of equations.

∂φ

∂x1
= · · · = ∂φ

∂xn
=

∂φ

∂λ1
= · · · = ∂φ

∂λm
= 0. (7)

Since d =
∑n

i=1(xi − ci)2, the equation (7) simplifies to the following.

2(x1 − c1) +
m∑
i=1

λi
∂fi
∂x1

= · · · = 2(xn − cn) +
m∑
i=1

λi
∂fi
∂xn

= f1 = · · · = fm = 0. (8)

The condition f1 = · · · = fm = 0 implies x ∈ V (F ). And the rest of the equation (8) gives us the
following.

(x1 − c1, . . . , xn − cn) = −
1

2

( m∑
i=1

λi
∂fi
∂x1

, . . . ,
m∑
i=1

λi
∂fi
∂xn

)
=

m∑
i=1

(−λi
2
)
( ∂fi
∂x1

, . . . ,
∂fi
∂xn

)
∈ 〈∇f1, . . . ,∇fm〉 = (TxA)

⊥.
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That means x− c ⊥ NxA.

Corollary 14 Let f be the defining polynomial of an ellipsoid, E ⊆ Rn. The semi-axes of E satisfy
the system of equations achieved by letting the 2-minors of the following matrix and f equal to 0.[

x1 . . . xn
∂f
∂x1

. . . ∂f
∂xn

]
. (9)

Proof. The semi-axes of E are also critical points for dE . Because E = V (f), by Proposition 13, a
point v ∈ E is a critical point for dE if it satisfies v ∈ 〈∇f〉. This is equivalent with the rank of the
following matrix being one. [

v1 . . . vn
∂f
∂x1
|X=v . . . ∂f

∂xn
|X=v

]
. (10)

This is the same matrix as in (9) after the substitution X = v. Because the rank of a matrix is equal
to its determinantal rank, this means that all 2-minors (determinant of the 2 by 2 sub-matrices) must
vanish. This together with f = 0, gives us a system of

(
n
2

)
+ 1 polynomial equations in n variables

with the degree of the polynomials at most 2.

Remark 15 Note that Corollary 14 says that the semi-axes are among the solutions to the introduced
system of equations and does not say all of these solutions are semi-axes. Consider the 2-dimensional
case. One can check that when the defining polynomial of the ellipse is x2

a2
+ y2

b2
− 1, with a 6= b,

the solution to the system of equations of Corollary 14 gives four points, the two pairs of antipodal
points, obviously only two of them should be picked up as the semi-axes which are orthogonal to each
other. Now if a = b, all the points on the ellipse which now is a circle is a solution to the system! Any
two of these infinite choices that are orthogonal to each other can be picked up as the semi-axes.

In general, consider an ellipsoid in Rn, and let v1, . . . , vn be a set of semi-axes for this ellipsoid.
If the length of these semi-axes are all different, then the solution set of the system in Corollary 14 is
a zero-dimensional set, i.e. a finite set of points, or to be more exact, a set of 2n points. Otherwise, its
dimension which is equal to the dimension of the irreducible component of this algebraic set with the
highest dimension, is equal to the maximum number of semi-axes of the same length.

We will not spend any further on this remark and refer the interested reader to [8, Chapter 9]
where they can find several methods to compute dimension of an algebraic set.

Example 16 Consider the matrix M1 in equation (2). By Lemma 8, its defining polynomial is

f =
1

9
x2 + 3y2 +

10

9
z2 − 2

3
xy +

2

9
xz − 8

9
yz − 1.

The matrix in equation (9) becomes[
x y z

2
9
x− 2

3
y − 2

9
z 6y − 2

3
x− 8

9
z 20

9
z + 2

9
x− 8

9
z

]
.

By Corollary 14, the semi-axes are among the solutions to the following system of equations.
1
9
x2 + 3y2 + 10

9
z2 − 2

3
xy + 2

9
xz − 8

9
yz − 1 = 0,

52
9
xy − 8

3
xz − 2

3
x2 + 2

3
y2 − 2

9
yz = 0,

−8
3
xy + 2xz + 2

9
x2 + 2

3
yz − 2

9
z2 = 0,

−8
3
y2 − 34

9
yz + 2

9
xy + 8

3
z2 + 2

3
xz = 0.
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There are various methods developed for solving a system of polynomial equations with symbolic
exact solutions such as using Gröbner basis [8, Chapters 2 and 3], resultant techniques [7, Chapter
3], or with numeric solutions such as using numerical homotopy methods [2]. Solving this system we
get 6 points shown in Figure 3b. One can use the predefined command HilbertDimension in the
PolynomialIdeals package of Maple to compute the dimension of the algebraic set which is the
solution set of the above system. The result is 0 as expected.

A more linear algebra flavour approach is to use singular value decomposition. LetM ∈ GLn(R).
Denote the singular value decomposition of M as U1SU

t
2, where S is a diagonal matrix with the

singular values of M , denoted by σis on its diagonal, ordered from the largest to the smallest value,
U1 and U2 two orthogonal matrices with columns denoted by uis and vis respectively. uis and vis
are called the left and the right singular vectors of M . From [4, Chapter 3] remember that σ1 is the
maximum possible length of Mv for v ∈ Sn−1. The vector Mv which its length is σ1, is in fact the
major semi-axis of the ellipsoid EM = M(Sn−1). Again from [4, Chapter 3], the first right singular
vector of M , v1, is the point v which Mv has length σ1, and the first left singular vector of M , u1 is
1
σ1
Mv1. Therefore the major semi-axis of EM is equal to Mv1 or equivalently σ1u1. Similarly the

rest of semi-axes of EM can be computed as Mvi or σiui.

Proposition 17 Let M ∈ GLn(R) and let σ1, . . . , σn to be the singular values of M ordered from
the largest to the smallest and u1, . . . , un be the corresponding left singular vectors of the σis. The
semi-axes of EM ordered by their length are σ1u1, . . . , σnun.

4 TRD decomposition
In this section we restrict ourselves to ellipsoids in R3. For the rest of the section fix the notation.
Let M ∈ GL3(R), E = EM , M = U1SU

t
2 the singular value decomposition with σi, ui and vis the

singular values, singular left vectors and singular right vectors, and A1, A2 and A3 the major, mean
and minor semi-axes of E respectively.

A unique ellipse passes through each two choices of the three semi-axes on the surface of the
ellipsoid. The minor-mean and the mean-major ellipses are the smallest and the largest possible
ellipses on the surface of the ellipsoid. Denote the plane containing the minor-mean ellipse by π1. By
rotating π1 around the vector A2 (see Figure 4) about α for 0 ≤ α ≤ π

2
, we get a new plane π2 that

intersects E in a different ellipse with two semi-axes, one being A2 and the other A′3 a point on the
minor-major ellipse of E. For a unique choice of α, A′3 has the same length as A2. Clearly if length
of A2 and A3 are the same, then α = 0, otherwise α > 0. We want to use a shear map parallel to
the plane π2 to transform E to a new ellipsoid. So before going any further, we should know how
to find this plane. The plane π2 is the plane passing through the three points; the origin, A2 and A′3.
Therefore, we need to find the coordinates of A′3. This will uniquely determines π2 as well.

There are different ways to do this. A linear algebra flavour one is to use the singular value
decomposition. There exists a vector v4 ∈ S2 such that A′3 = Mv4. Since A′3 belongs to the minor-
major ellipse of E, v4 should be written as λ1v1 + λ2v

3 for two real scalar values λ1 and λ2. At the
same time we want Mv4 to have the same length as A2, therefore we have the following system of 2
equations with 2 variables. {

|λ1v1 + λ2v
3| = 1,

|λ1Mv1 + λ2Mv3| = σ2.
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Figure 4: An ellipsoid in R3. The major, mean and minor semi-axes are the points named A1, A2

and A3 respectively. The minor-mean ellipse is colored in purple, we tilted the plane containing this
ellipse around the line connecting the origin to A2, about α, where 0 ≤ α ≤ π

2
until it intersects the

minor-major ellipse (colores in magenta) in A′3, a point with the same length as A2’s. The ellipse
passing through A2 and A′3 is a circle (colored in orange).

Equivalently {
|λ1v1 + λ2v

3| = 1,
|λ1σ1u1 + λ2σ3u

3| = σ2.

A second approach is as follows. The defining equation of the plane containing the minor-major
ellipse can be calculated by first letting v = A1 × A3 to be the cross-product of these two vectors.
This vector is the normal vector of the minor-major plane. A plane with the normal vector v and
containing a point u is a solution set of the equation v1(x− u1) + v2(y − u2) + v3(z − u3) = 0. We
can use either A1 or A3 as u. Let g be the linear polynomial in this equation. The point A′3 that we
are looking for satisfies the following system of equations.

f = g = x2 + y2 + z2 − |A2|2 = 0.

Example 18 Consider the matrix M1 in (2). To find the coordinates of the tilted minor using the first
approach, we have to solve the following system of equations (numbers are rounded, for more exact
values see the computation files).{
|λ1(−0.2351,−0.5831,−0.7777) + λ2(−0.6949,−0.4586, 0.5539)| = 1
|3.7955λ1(−0.2351,−0.5831,−0.7777) + 0.5183λ2(−0.6949,−0.4586, 0.5539)| = 1.5251

That can simplify to the following.{
λ21 + λ22 = 1
14.405λ21 + 0.2686λ22 = 2.3259

By solving this system of equations numerically and substituting the solution into λ1A1 + λ2A3 we
get (−1.4704, 0.2015,−0.3511). Now using the second approach. The defining polynomial of EM1 is
the following.

f = 3y2 − 8

3
yz +

10

9
z2 +

1

9
x2 − 2

3
xy +

2

9
xz − 1.

For the equation of the plane containing A1 and A3 we can use A2 instead of calculating the cross
product of A1 × A3 as A2 is also orthogonal to both of them. It gives us g = 0.2305x − 0.6706y −
1.3502z. So the alternative system of equations is the following.

f = g = x2 + y2 + z2 − 2.3259 = 0.

186



The Electronic Journal of Mathematics and Technology, Volume 16, Number 3, ISSN 1933-2823

This also gives us the same solution (−1.4704, 0.2015,−0.3511).

A shear map parallel to π2 maps E to a new ellipsoid E ′ where two of its semi-axes have the same
length, they are A′3 and A2, but its third semi-axis is on the line normal to π2 and is the image of the
furthest point of E from π2 which is not necessarily A1. Denote this shear map by TE , the furthest
point of E from π2 by A′1, and the image of A′1 under TE by A′′1. If we find the coordinates of A′1 and
A′′1, then we can find TE by solving the linear system of equations generated by the following three
conditions.

TE(A2) = A2, TE(A
′
3) = A′3, TE(A

′
1) = A′′1.

Note that A2, A′3 and A′′1 are semi-axes of an ellipsoid, E ′, therefore they form a basis of R3. In
addition to that, A′1 is outside the plane containing A2 and A′3, therefore the set {A2, A

′
3, A

′
1} is also a

basis for R3. This means that the linear system to find entries of TE has a unique solution.

Theorem 19 Let M ∈ GL3(R), there are a shear matrix T , an orthogonal matrix R, and a diago-
nalizable matrix D with two equal eigenvalues, such that M = TRD.

Proof. LetM ∈ GL3(R) and TE to be the shear map that transformsEM to the rotational ellipsoid (an
ellipsoid with two semi-axes of equal length) introduced before this theorem. Let TEM = UP be the
polar decomposition of TEM as in proof of Proposition 11. The matrix U is an orthogonal matrix and
the matrix P is a positive definite matrix. From Section 2 remember that real symmetric matrices are
orthogonally diagonalizable, therefore their singular values are the same as their eigenvalues. Since
the singular values of P and TEM are the same, and the singular values of TEM are length of semi-
axis of a rotational ellipsoid, P has two equal eigenvalues. Finally, by Lemma 4 the matrix TE is
invertible and its inverse is also a shear map. Let T = T−1E , R = U and D = P , we have M = TRD.
This finishes the proof.

An algorithm to compute the TRD decomposition of Theorem 19 is given below, Algorithm 1.
We implemented this algorithm both in Maple and Matlab.

In Maple we used LinearAlgebra package for basic linear algebra computations such as trans-
pose, inverse, cross product, rank etc., for the singular value decomposition we used the command
svd in MTM package. To solve the equations we used the numeric solver command fsolve. For
line 8 of Algorithm 1 we used Maximize command from Optimization package. The re-
sult together with a few more procedures such as finding the defining polynomial of ellipsoids are
wrapped into a new Maple package named Ellipsoids accessible online for free from https:
//doi.org/10.5281/zenodo.7021479.

As for the Matlab implementation, we used vpasolve for numerically solving the equations. For
line number 8 of the Algorithm 1 we used Lagrange multipliers technique and vpasolve. All the
equivalent versions of the functions implemented in the Maple package Ellipsoids can be found
in the Matlab script file Ellipsoids accessible online for free from the same Zenodo repository.

187

https://doi.org/10.5281/zenodo.7021479
https://doi.org/10.5281/zenodo.7021479


The Electronic Journal of Mathematics and Technology, Volume 16, Number 3, ISSN 1933-2823

Input : M ∈ GL3(R).
Output: Three real matrices of order 3, T , R, D where T is a shear matrix, R is an

orthogonal matrix, and D is a diagonalizable matrix with two equal eigenvalues.

1 compute the singular decomposition of M , M = U1S1U
t
2. Denote the singular values of

M by σi ordered from the largest to the smallest, and the left and the right singular
vectors by ui and vi accordingly, i = 1, 2, 3;

2 Ai = σiu
i, i = 1, 2, 3;

3 solve |λ1v1 + λ2v
3| − 1 = |λ1A1 + λ2A3| − σ2 = 0 to find λ1 and λ2;

4 A′3 = λ1A1 + λ2A3;
5 v = A2 × A′3 (cross product);
6 g = v(X − A2)

t where X = (x, y, z);
7 f = f |X=M−1X ;
8 A′1 = argmax

f(u)=0

(
g(u)

)
;

9 A′′1 =
A1vt

vvt
v;

10 solve TEA2 − A2 = TEA
′
3 − A′3 = TEA

′
1 − A′′1 = 0 to find TE;

11 compute the singular decomposition of TEM , TEM = U3S2U
t
4;

12 T = T−1E ;
13 R = U3U

t
4;

14 D = U3S2U
t
4;

Algorithm 1: An algorithm to decompose an invertible matrix of order 3 to product of three
matrices, a shear, a rotation and a dilation.

Example 20 Recall the matrix M1 from (2). The TRD decomposition of this matrix is the following.

T =

 1.5331746196 2.1705784446 −0.9869790414
−0.0730706176 0.7025261487 0.1352636931
0.1273275947 0.5183565054 0.7642992318

 ,
R =

−0.3248257249 −0.1398570971 0.9353759890
0.2027109239 0.9557267312 0.2132948583
−0.9237946362 0.2588945879 −0.2820940669

 ,
D =

 1.4703492210 −0.0810228156 −0.0576003935
−0.0810228156 1.4051711889 −0.0852531757
−0.0576003935 −0.0852531757 1.4644835940

 .
Note that TRD = M , D is diagonalizable with two equal eigenvalues, R is an orthogonal matrix
and T is a shear matrix keeping the plane containing the mean semi-axis of EM1 and the titled minor.

5 Conclusion
In this paper we presented a computational algorithm, Algorithm 1, to compute the TRD decomposi-
tion introduced in [6] for invertible matrices of order 3. The algorithm is implemented in both Maple
and Matlab (see https://doi.org/10.5281/zenodo.7021479).
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Note that all steps of algorithm 1 can be done for M ∈ GLn(R) with n > 3 as well, with one
difference. In higher dimension, the ellipsoid has more than 3 semi-axes and instead of a unique
choice of three semi-axes ordered by length, we have

(
n
3

)
choices. Let (Ai1 , Ai2 , Ai3) be one such

choice where 1 ≤ i1 � i2 � i3 ≤ n. Instead of the major, mean, minor semi-axes of 3d ellipsoid
in Algorithm 1, one should use these three semi-axes which of course there is a 3d ellipsoid passing
through them on the surface of the main ellipsoid (compare with the case of ellipse passing through
each two semi-axes of a 3d ellipsoid on its surface). Therefore the TRD decomposition is not unique.
The shear matrix, TE , in this case keeps the hyperplane (linear space of codimension 1) that contains
Ai2 , the tilted A′i3 and all other non-chosen n − 3 semi-axes. So the image of EM under this shear
map has n− 2 semi-axes the same as the original one.

One may hope for a possibility of repeating the shearing step of the algorithm several times to get
an ellipsoid with more than two semi-axes of the same length and then doing the polar decomposition
to get the following statement. However, it should be noted that we do not have a prior control on the
relation between the length of A′′i1 and the length of A′i3 and other Ajs (j 6∈ {i1, i2, i3}). This makes it
difficult to judge the possibility of choosing the next three semi-axes appropriately.

Question: Let M ∈ GLn(R), n ≥ 3, and k ∈ {2, 3, . . . , n− 1}. Is it possible to find k − 1 shear
maps T1, ..., Tk−1, an orthogonal matrix R, and a diagonalizable matrix D with k equal eigenvalues,
such that M = T1T2 · · ·Tk−1RD?

Data Access Statement. The code and data described in this paper is openly available from this
URL: https://doi.org/10.5281/zenodo.7021479.
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